Process Modeling in Composites Manufacturing

Suresh G. Advani
University of Delaware
Newark, Delaware

E. Murat Sozer
Koc University
Istanbul, Turkey
MANUFACTURING ENGINEERING AND MATERIALS PROCESSING
A Series of Reference Books and Textbooks

EDITOR
Ioan Marinescu
University of Toledo
Toledo, Ohio

FOUNDING EDITOR
Geoffrey Boothroyd
Boothroyd Dewhurst, Inc.
Wakefield, Rhode Island

2. Cold Rolling of Steel, William L. Roberts
3. Strengthening of Ceramics: Treatments, Tests, and Design Applications, Harry P. Kirchner
4. Metal Forming: The Application of Limit Analysis, Betzalel Avitzur
5. Improving Productivity by Classification, Coding, and Data Base Standardization: The Key to Maximizing CAD/CAM and Group Technology, William F. Hyde
6. Automatic Assembly, Geoffrey Boothroyd, Corrado Poli, and Laurence E. Murch
7. Manufacturing Engineering Processes, Leo Alting
8. Modern Ceramic Engineering: Properties, Processing, and Use in Design, David W. Richerson
9. Interface Technology for Computer-Controlled Manufacturing Processes, Ulrich Rembold, Karl Armbruster, and Wolfgang Ulzmann
10. Hot Rolling of Steel, William L. Roberts
11. Adhesives in Manufacturing, edited by Gerald L. Schneberger
12. Understanding the Manufacturing Process: Key to Successful CAD/CAM Implementation, Joseph Harrington, Jr.
13. Industrial Materials Science and Engineering, edited by Lawrence E. Murr
14. Lubricants and Lubrication in Metalworking Operations, Elliot S. Nachtman and Serope Kalpakjian
15. Manufacturing Engineering: An Introduction to the Basic Functions, John P. Tanner
17. Connections in Electronic Assemblies, Anthony J. Bilotta
20. Programmable Controllers for Factory Automation, David G. Johnson
21. Printed Circuit Assembly Manufacturing, Fred W. Kear
24. Flat Processing of Steel, William L. Roberts
25. Soldering for Electronic Assemblies, Leo P. Lambert
27. Flexible Manufacturing Systems: Benefits for the Low Inventory Factory, John E. Lenz
30. Steel-Rolling Technology: Theory and Practice, Vladimir B. Ginzburg
32. In-Process Measurement and Control, *Stephen D. Murphy*
33. Assembly Line Design: Methodology and Applications, *We-Min Chow*
34. Robot Technology and Applications, *edited by Ulrich Rembold*
35. Mechanical Deburring and Surface Finishing Technology, *Alfred F. Scheider*
37. Assembly Automation and Product Design, *Geoffrey Boothroyd*
38. Hybrid Assemblies and Multi-chip Modules, *Fred W. Kear*
39. High-Quality Steel Rolling: Theory and Practice, *Vladimir B. Ginzburg*
41. Metalworking Fluids, *edited by Jerry P. Byers*
42. Coordinate Measuring Machines and Systems, *edited by John A. Bosch*
43. Arc Welding Automation, *Howard B. Cary*
44. Facilities Planning and Materials Handling: Methods and Requirements, *Vijay S. Sheth*
46. Laser Materials Processing, *edited by Leonard Migliore*
49. Metal Cutting Theory and Practice, *David A. Stephenson and John S. Agapiou*
50. Manufacturing Process Design and Optimization, *Robert F. Rhyder*
51. Statistical Process Control in Manufacturing Practice, *Fred W. Kear*
52. Measurement of Geometric Tolerances in Manufacturing, *James D. Meadows*
53. Machining of Ceramics and Composites, *edited by Said Jehanmir, M. Ramulu, and Philip Koshy*
54. Introduction to Manufacturing Processes and Materials, *Robert C. Creese*
55. Computer-Aided Fixture Design, *Yiming (Kevin) Rong and Yaoxiang (Stephens) Zhu*
57. Flat Rolling Fundamentals, *Vladimir B. Ginzburg and Robert Ballas*
60. Integrated Product Design and Manufacturing Using Geometric Dimensioning and Tolerancing, *Robert G. Campbell and Edward S. Roth*

Additional Volumes in Preparation

Handbook of Induction Heating, *Valery Rudnev, Don Loveless, and Ray Cook*
Dedication

to our families:

Yolanda Chetwynd, Madhu and Diana Advani;
and
Hanife, Zehra and Eray Sozer.
Preface

Properties and performance of products made from fiber reinforced composites depend on materials, design, and processing. This book is about polymer composites processing. Three decades ago our understanding of mass, momentum, and energy transfer during composites processing was nonexistent. As a result, almost all manufacturing was based on experience, intuition and trial and error. We have come a long way since then. Many researchers did delve into this difficult and poorly understood area to uncover the physics and chemistry of processing and to develop the fundamental and constitutive laws to describe them.

There is currently a wealth of literature on modeling and simulation of polymer composite manufacturing processes. However, we felt that there was a need to systematically introduce how one would go about modeling a composite manufacturing process. Hence, we focused on developing a textbook instead of a researcher's reference book to provide an introduction to modeling of composite manufacturing processes for seniors and first-year graduate students in material science and engineering, industrial, mechanical, and chemical engineering. We have explained the basic principles, provided a primer in fluid mechanics and heat transfer, and tried to create a self-contained text. Many example problems have been solved to facilitate the use of back-of-the-envelope calculations to introduce a scientific basis to manufacturing. The end of each chapter has questions and problems that reinforce the content and help the instructor. “Fill in the Blanks” sections were created by Murat Sozer to add to the qualitative knowledge of process modeling of composites manufacturing that will develop the “experience base” of the manufacturing, materials, and design engineer or scientist.

A project of this magnitude obviously cannot be realized without the help of others. First, we thank Mr. Ali Gokce, graduate student at the University of Delaware, who created many of the graphics in this book. Diane Kukich helped in technical editing. Of course we thank all the graduate students in our research group who over the years have helped create the research and the science base to develop models of composite manufacturing processes. We would especially like to mention Petri Hepola, Steve Shuler, Terry Creasy, Krishna Pillai, Sylvia Kueh, Simon Bickerton, Hubert Stadtfeld, Pavel Nedanov, Pavel Simacek, Kuang-Ting Hsiao, Gonzalo Estrada, Jeffery Lawrence, and Roopesh Mathur. Some of the examples and figures used in the book were first developed with their help.

The book contains eight chapters. The first two introduce the composite materials and manufacturing processes. Chapters 3–5 provide the tools needed to model the processes, and Chapters 6–8 apply these tools to some of the well known manufacturing processes.
Contents

Preface

1 Introduction
 1.1 Motivation and Contents
 1.2 Preliminaries
 1.3 Polymer Matrices for Composites
 1.3.1 Polymer Resins
 1.3.2 Comparison Between Thermoplastic and Thermoset Polymers
 1.3.3 Additives and Inert Fillers
 1.4 Fibers
 1.4.1 Fiber-Matrix Interface
 1.5 Classification
 1.5.1 Short Fiber Composites
 1.5.2 Advanced Composites
 1.6 General Approach to Modeling
 1.7 Organization of the Book
 1.8 Exercises
 1.8.1 Questions
 1.8.2 Fill in the Blanks

2 Overview of Manufacturing Processes
 2.1 Background
 2.2 Classification Based on Dominant Flow Process
 2.3 Short Fiber Suspension Manufacturing Methods
 2.3.1 Injection Molding
 2.3.2 Extrusion
 2.3.3 Compression Molding
 2.4 Advanced Thermoplastic Manufacturing Methods
 2.4.1 Sheet Forming
 2.4.2 Thermoplastic Pultrusion
 2.4.3 Thermoplastic Tape Lay-Up Process
 2.5 Advanced Thermoset Composite Manufacturing Methods
 2.5.1 Autoclave Processing
 2.5.2 Liquid Composite Molding
 2.5.3 Filament Winding
 2.6 Exercises
 2.6.1 Questions
 2.6.2 Fill in the Blanks

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved.
3 Transport Equations for Composite Processing
3.1 Introduction to Process Models
3.2 Conservation of Mass (Continuity Equation)
 3.2.1 Conservation of Mass
 3.2.2 Mass Conservation for Resin with Presence of Fiber
3.3 Conservation of Momentum (Equation of Motion)
3.4 Stress-Strain Rate Relationship
 3.4.1 Kinematics of Fluid
 3.4.2 Newtonian Fluids
3.5 Examples on Use of Conservation Equations to Solve Viscous Flow Problems
 3.5.1 Boundary Conditions
 3.5.2 Solution Procedure
3.6 Conservation of Energy
 3.6.1 Heat Flux-Temperature Gradient Relationship
 3.6.2 Thermal Boundary Conditions
3.7 Exercises
 3.7.1 Questions
 3.7.2 Problems

4 Constitutive Laws and Their Characterization
4.1 Introduction
4.2 Resin Viscosity
 4.2.1 Shear Rate Dependence
 4.2.2 Temperature and Cure Dependence
4.3 Viscosity of Aligned Fiber Thermoplastic Laminates
4.4 Suspension Viscosity
 4.4.1 Regimes of Fiber Suspension
 4.4.2 Constitutive Equations
4.5 Reaction Kinetics
 4.5.1 Techniques to Monitor Cure: Macroscopic Characterization
 4.5.2 Technique to Monitor Cure: Microscopic Characterization
 4.5.3 Effect of Reinforcements on Cure Kinetics
4.6 Crystallization Kinetics
 4.6.1 Introduction
 4.6.2 Solidification and Crystallization
 4.6.3 Background
 4.6.4 Crystalline Structure
 4.6.5 Spherulitic Growth
 4.6.6 Macroscopic Crystallization
4.7 Permeability
 4.7.1 Permeability and Preform Parameters
 4.7.2 Analytic and Numerical Characterization of Permeability
 4.7.3 Experimental Characterization of Permeability
4.8 Fiber Stress
4.9 Exercises
 4.9.1 Questions
 4.9.2 Fill in the Blanks
 4.9.3 Problems
5 Model Simplifications and Solution

5.1 Introduction
5.1.1 Usefulness of Models

5.2 Formulation of Models
5.2.1 Problem Definition
5.2.2 Building the Mathematical Model
5.2.3 Solution of the Equations
5.2.4 Model Assessment
5.2.5 Revisions of the Model

5.3 Model and Geometry Simplifications

5.4 Dimensionless Analysis and Dimensionless Numbers
5.4.1 Dimensionless Numbers Used in Composites Processing

5.5 Customary Assumptions in Polymer Composite Processing
5.5.1 Quasi-Steady State
5.5.2 Fully Developed Region and Entrance Effects
5.5.3 Lubrication Approximation
5.5.4 Thin Shell Approximation

5.6 Boundary Conditions for Flow Analysis
5.6.1 In Contact with the Solid Surface
5.6.2 In Contact with Other Fluid Surfaces
5.6.3 Free Surfaces
5.6.4 No Flow out of the Solid Surface
5.6.5 Specified Conditions
5.6.6 Periodic Boundary Condition
5.6.7 Temperature Boundary Conditions

5.7 Convection of Variables

5.8 Process Models from Simplified Geometries
5.8.1 Model Construction Based on Simple Geometries

5.9 Mathematical Tools for Simplification
5.9.1 Transformation of Coordinates
5.9.2 Superposition
5.9.3 Decoupling of Equations

5.10 Solution Methods
5.10.1 Closed Form Solutions

5.11 Numerical Methods

5.12 Validation
5.12.1 Various Approaches for Validation

5.13 Exercises
5.13.1 Questions
5.13.2 Problems

6 Short Fiber Composites

6.1 Introduction

6.2 Compression Molding
6.2.1 Basic Processing Steps [1]
6.2.2 Applications [1]
6.2.3 Flow Modeling
6.2.4 Thin Cavity Models
6.2.5 Hele-Shaw Model
6.2.6 Lubricated Squeeze Flow Model
6.2.7 Hele-Shaw Model with a Partial Slip Boundary Condition [2]
6.2.8 Heat Transfer and Cure
6.2.9 Cure
6.2.10 Coupling of Heat Transfer with Cure
6.2.11 Fiber Orientation

6.3 Extrusion
6.3.1 Flow Modeling
6.3.2 Calculation of Power Requirements [3]
6.3.3 Variable Channel Length [3]
6.3.4 Newtonian Adiabatic Analysis [3]

6.4 Injection Molding
6.4.1 Process Description
6.4.2 Materials
6.4.3 Applications
6.4.4 Critical Issues
6.4.5 Model Formulation for Injection Molding
6.4.6 Fiber Orientation

6.5 Exercises
6.5.1 Questions
6.5.2 Fill in the Blanks
6.5.3 Problems

7 Advanced Thermoplastic Composite Manufacturing Processes
7.1 Introduction
7.2 Composite Sheet Forming Processes
7.2.1 Diaphragm Forming
7.2.2 Matched Die Forming
7.2.3 Stretch and Roll Forming
7.2.4 Deformation Mechanisms

7.3 Pultrusion
7.3.1 Thermoset Versus Thermoplastics Pultrusion
7.3.2 Cell Model [4]

7.4 Thermal Model
7.4.1 Transient Heat Transfer Equation
7.4.2 Viscous Dissipation

7.5 On-line Consolidation of Thermoplastics
7.5.1 Introduction to Consolidation Model
7.5.2 Importance of Process Modeling
7.5.3 Consolidation Process Model
7.5.4 Model Assumptions and Simplifications
7.5.5 Governing Equations
7.5.6 Boundary Conditions
7.5.7 Rheology of the Composite
7.5.8 Model Solutions
7.5.9 Inverse Problem of Force Control
7.5.10 Extended Consolidation Model

7.6 Exercises
7.6.1 Questions
7.6.2 Fill in the Blanks
8 Processing Advanced Thermoset Fiber Composites

8.1 Introduction
8.2 Autoclave Molding
 8.2.1 Part Preparation
 8.2.2 Material and Process Parameters
 8.2.3 Processing Steps
 8.2.4 Critical Issues
 8.2.5 Flow Model for Autoclave Processing
8.3 Liquid Composite Molding
 8.3.1 Similarities and Differences Between Various LCM Processes
 8.3.2 Important Components of LCM Processes
 8.3.3 Modeling the Process Issues in LCM
 8.3.4 Process Models
 8.3.5 Resin Flow
 8.3.6 Heat Transfer and Cure
 8.3.7 Numerical Simulation of Resin Flow in LCM Processes
8.4 Filament Winding of Thermosetting Matrix Composites
 8.4.1 Introduction
 8.4.2 Process Models
8.5 Summary and Outlook
8.6 Exercises
 8.6.1 Questions
 8.6.2 Fill in the Blanks
 8.6.3 Problems

Bibliography